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Two-mode chaos and its synchronization properties
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Using a simple model with bimodal dynamics, we investigate the intra- and inter-system entrainment of the
two different time scales involved in the chaotic oscillations. The transition between mode-locked and mode-
unlocked chaos is analyzed for a single system. For coupled oscillators, we demonstrate full and partial
synchronization patterns depending on the adjustment between the fast and slow time scales and reveal the
embedded structure of the corresponding synchronization regions.
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Synchronization of chaotic systems has become a major
field of research in recent years [1,2]. Different criteria for
and approaches to chaotic synchronization have been devel-
oped and peculiarities of the bifurcation mechanisms in-
volved in the desynchronization have been examined [3-10].
It appears that the classical concept of synchronization re-
lated to the locking of the basic frequencies and instanta-
neous phases of regular oscillations (and to the suppression
of the basic frequencies at high forcing amplitudes) is also
applicable to a certain class of chaotic systems, namely, to
systems for which the basic frequency can easily be distin-
guished in the power spectrum [7,9]. This frequency is typi-
cally related to the period of the original limit cycle from
which the chaotic attractor is produced via a cascade of
period-doubling bifurcations (the Feigenbaum scenario).

While entrainment of single-mode deterministic or sto-
chastic oscillations is relatively well-understood, the dynam-
ics of systems with several oscillatory modes is less studied.
Living systems often exhibit oscillations with different time
scales. The thalamocortical relay neurons, for instance, can
generate either spindle or delta oscillations [11]. Neiman and
Russell [12] have recently found that the electroreceptors in
paddlefish can be biperiodic. Elston et al. [13] have studied
transitions between synchrony and asynchrony in both slow
oscillations and fast spikes for a pair of biological neurons.
Most recently, Sosnovtseva er al. [14] have described the
individual nephron as a two-mode oscillator demonstrating
relatively fast oscillations associated with the myogenic
regulation of the arteriolar diameter and slower oscillations
related to a delay in the tubuloglomerular feedback.

Many models of bursting neurons [15], for example, can
be split into slow and fast subsystems. Such an approach
works perfectly when the subsystems can operate separately
and the coupling is weak. Otherwise, the paradigm of
coupled units seems to be less fruitful. Hence the description
of double-oscillatory nature of the original system by means
of a single two-mode oscillator is useful when (i) coupling is
strong enough and (ii) the essential dynamical effects arise
due to interaction between the subsystems.

In this paper we show how the synchronization properties
of coupled oscillators that individually demonstrate two-
mode chaotic behavior are related to intraoscillator transi-
tions in the chaotic regime.

The model we consider consists of two oscillatory sub-
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units. A self-sustained oscillator drives a damped nonlinear
oscillator via both additive and multiplicative forcing. From
a physical point of view, this may be considered as a para-
metric excitation of the fast oscillations. Besides the above-
mentioned nephron system, from which our model was origi-
nally derived, the problem has clear implementations in
terms, for instance, of nonlinear electronic circuits or
coupled mechanical oscillators.
The set of equations reads:

i-(1-x)xi+ wx=E+cv, (1)

U+dv+vQv) =F(x,v), (2)

where the first equation represents a van der Pol-type oscil-
lator with frequency w. This oscillator is subjected to a con-
stant force E and receives a feedback cv from the other sub-
unit. The second equation describes a damped oscillator with
a frequency ) (v) represented by a nonlinear function of the
form Q(v)=1+Be” with B<1. This form originally derives
from our nephron model but actually describes a fairly ge-
neric case: for small v, 2(v)= 1, but larger values of v pro-
duce a considerable upshift of the resonance frequency. The
term F(x,v) represents the forcing from the first oscillator.
The specific form to be used includes both an additive and a
multiplicative forcing:

F(x,v) =a tanh(x)(1 + ). (3)

The hyperbolic tangent tanh(x) is used to represent saturation
phenomena at both very positive and very negative values of
x. Together with the nonlinear frequency term Q(v), F(x,v)
provides stabilization of the oscillation amplitude in the
parametrically forced oscillator (2).

Throughout our study w? and E are used as control pa-
rameters while the other parameters are fixed at ¢=2.0,
d=0.1, B=0.001, a=0.474, and y=12.85. The substitution
y=x, u=0 is applied to convert the Egs. (1) and (2) into a set
of four first-order ODEs:

x=y, 4)
y=(1-x%)y-w’x+E+cu, (5)
v=u, (6)

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.72.056208

POSTNOV et al.

1.0 T 7

0.0 f

-1.0 1 R

-2.0 . .
550.0 600.0 650.0 700.0

1

FIG. 1. Typical time series of two-mode chaos. E=-0.4898 and
@?=0.5202.

=—du-vQ)+F(x,v). (7)

At vanishingly low values of c, the self-sustained dynamics
of the system is bounded by the lines of an Andronov-Hopf
bifurcation for subsystem (4) and (5):

E=+w’. (®)

However, for finite values of ¢, self-sustained regimes oc-
cupy a wider region on the (w?,E) parameter plane because
of the positive feedback provided by the term cu. For larger
¢ values (¢=2.0 in our study), this region is closely covered
by enumerous regular, quasiperiodic, and chaotic regimes.
Among these regimes, we focus on the regime of chaotic
dynamics (Fig. 1) that appears through a period-doubling
cascade, but whose main feature is the presence of two time
scales originating from the slow dynamics of subunit (4) and
(5) and the fast dynamics of subunit (6) and (7). The phase
and frequency for the second subunit can be estimated di-
rectly from the phase projection on the (v,u) plane. For the
first subunit (4) and (5), the corresponding phase projection
contains a considerable contribution from the second sub-
unit. To filter out the contribution from the fast component
we introduce two auxiliary equations:

é=w(x-¢ and n=w(f- 7). 9)

In this way, we can extract information about each of the two
oscillatory modes by calculating return times 7, and 7, of the
phase trajectories to Poincaré secants defined by 7=0 and
u=0, respectively, in the (&, ) and (v,u) phase subspaces as
discussed in Ref. [1]. Introducing the rotation number

r=(m,)(7y (10)

we can determine the ratio between the slow and fast fre-
quencies associated with the first and the second subunits.
Depending on the control parameters, r takes rational or
irrational values. Figure 2 presents a plot of r vs E for
@*=0.5202. The mode-locked regimes obviously correspond
to the left branch of the curve r=1/4. Let us focus on the
development of the two-mode chaotic attractor. With increas-
ing E, chaos occurs at E=~—0.489 89, but the two modes
remain locked and the individual system exhibits a period-
doubling chaos. At E~-0.4898, one observes a significant
rise of the r curve with further increase of E. Inspection of
the system dynamics shows that there is a clear difference
between chaotic attractors with rational and with floating ro-
tation numbers. Evolution of phase diffusion coefficient d
[16] along E reveals the same transition. We will refer to
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FIG. 2. (a) The three largest Lyapunov exponents, (b) rotation
number r, and (c) phase diffusion coefficient d as a function of
control parameter E for a single system with w?=0.5202. While the
largest Lyapunov exponent grows monotonically, the rotation num-
ber and phase diffusion coefficient indicate transitions inside the
chaotic dynamics. The gray point represents an example of mode-
locked chaos. The black point corresponds to mode-unlocked chaos.
The properties of the two types of chaos are compared in Fig. 3.

these attractors as “mode-locked” and “mode-unlocked”
chaos, respectively. At the same time, no qualitative changes
are found in the Lyapunov exponents.

In Fig. 3 the two columns of panels allow us to
compare the attractor characteristics before and after the
mode-unlocking transition at the points marked gray
(E=-0.489 87) and black (E=-0.48970) in Fig. 2. It is
clearly seen that the 3D phase projection (top row) changes
in a specific way by adding loops inside and around the main
body of the attractor. The next row is a zoom on part of the
attractor in the (x,y) phase projection. The main difference
between the two panels is the appearance in the right-hand
panel of small-sized additional structures in the bundle of
trajectories (indicating the existence of a time scale faster
than the one that defines the main shape of the attractor). The
third row shows a return time map with 7,(n) being 7, cal-
culated n times. For simple period-doubling chaos (left
panel) this map has a clearly visible segmented structure
(and there is an order of the segments to be visited). After the
mode-unlocking transition (right panel), however, the map
becomes more disordered with merging segments and with
many points outside the main part of the map. With this, the
power spectra reveal the band structure of the chaotic attrac-
tor. Note that the transition we discuss occurs for period-
doubling chaos, thus the well-known band-merging bifurca-
tions would be expected to occur. However, in our case, the
sequence of band-merging bifurcations is interrupted by the
above-described mode-unlocking transition. The two bottom
rows indicate the changes in the distribution of return times
7, and 7,. Before the mode-unlocking transition there is a
well-pronounced band structure for both time scales. After
the transition, the histogram for the slow time scale becomes
uniform but clearly bounded. For the fast time scale, the
histogram remains split in a few segments and spread over a
wider interval. Summarizing the above description, the tran-
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FIG. 3. Comparison of chaos characteristics at E=-0.489 87
(left panels) and at E=-0.489 70 (right panels) corresponding to the
gray and black points in Fig. 2, respectively. There are obvious
differences in the two-mode chaos before and after the mode-
unlocking transition.

sition from a resonant value of r to floating behavior is ac-
companied by considerable changes in attractor characteris-
tics as indicated in Fig. 3.

A similar phenomenon was observed in a case of gener-
alized synchronization of two chaotic systems with fre-
quency ratio 1:2 [18]. However, in our case the system can-
not be split into chaotic oscillators and chaos appears to
nonlinear interaction between functional units.

We have also compared the observed transition with the
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known evolution of a chaotic attractor to so-called “Shilni-
kov chaos” [17]. Again a clear difference exists. In our case
the trajectory does not visit the close vicinity of an unstable
equilibrium point embedded in the attractor. At least, there
are no visible changes before and after mode-unlocking tran-
sition. Accordingly, the statistics of mean return times (given
in the bottom rows of Fig. 3) is rather different from what we
know for the Shilnikov attractor where the return time histo-
gram extends to (infinitely) large times. In our case the return
time histogram is smoothed but bounded for both modes.

Let us now consider how such systems, individually op-
erating in the two-mode chaotic regime, can interact. We
introduce a simple one-variable-difference coupling term
with a strength k. The equation for the x variable in Eq. (4)
then becomes

Xy =y + k(e =x)), dy=y,+k(x;—x,),

where subscripts indicate the first and second interacting
units. By calculating two rotation numbers each being the
ratio between similar time scales in the coupled units,

p <Tx1> <Tv1>

T VT

we can separately describe the adjustment of the slow and
fast modes. The simplest way to introduce a mismatch be-
tween the units would be to choose different values of w?
and wg. However, for the individual system (4)—(7) the
curves of period-doubling bifurcation are generally parallel
to the Hopf bifurcation curve given by Eq. (8), and any
variation of w” will change not only the main frequency but
also the operating regime of the unit. Hence it would be
difficult to come to a reasonable conclusion about the inter-
action between the attractors of a particular type. To avoid
this problem, as suggested in Ref. [7], we have introduced a
mismatch through an additional scale factor € in the left-
hand side of the equations for one of the interacting units:
e=1.0 corresponds to the case of identical units, while varia-
tions below and above 1.0 give rise to a detuning that does
not influence the operating regime.

Synchronization of one-mode chaotic systems via
frequency/phase locking is thoroughly studied [1,2,9]. How-
ever, entraiment of two-mode chaotic regimes occurs in a
more complex way. Let us consider the mutual adjustment of
the oscillatory modes for the selected value of the coupling
strength k=0.0035. Figure 4 presents the variation of the
rotation numbers for the slow r, and fast r, time scales ver-
sus the frequency mismatch e. There exists an interval of
£ e€[0.9984,1.001 76] where r,=r,=1.0. This implies syn-
chronous behavior with respect to both time scales. Both for
larger and for smaller values of e, the rotation number r,
diverges from 1.0 while r, remains equal to one within a
wider interval of & €[0.9957,1.003 82]. This demonstrates
desynchronization between the fast oscillatory modes in the
coupled units while the slow modes remain locked. In this
way, both partial synchronization (one of two time scales is
synchronized) and all-mode frequency locking of chaos can
be observed. Note that the behaviors of r, and r, near the
edges of the locked region are different. Comparing the

(11)
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FIG. 4. Adjustment of two pair of oscillatory modes is indicated
by changes in the r, and r, rotation numbers with respect to the
frequency mismatch e. w%=0.5202, E\=E,=-0.489 87, and
k=0.0035.

shape of the curves with the known synchronization pictures,
one can draw analogies with the synchronization of periodic
oscillations (sharp tongue edges imply saddle-node bifurca-
tions) for r, and something similar to chaotic phase synchro-
nization or synchronization of noisy oscillations for r, [1].
We assume that this reflects different synchronization mecha-
nisms for the fast and slow modes.

Figure 5 shows the synchronization regions on the (g,k)
parameter plane for the slow and fast oscillatory modes sepa-
rately. We now clearly see that the two time scales have
different widths of the Arnold tongues down to vanishingly
small coupling strengths. An interesting observation can also
be made for stronger coupling. For k> 0.004, the fast oscil-
latory mode is completely desynchronized and displays a
gradual increase of r, with increasing . This seems to be
due to coupling through the slow x variable. A stronger cou-
pling increases the coupling-induced shift of the operating
point for the two interacting units and, hence, provokes the
complete unlocking of the fast modes from the slow ones.
Since the fast modes can interact only via the slow variable
such a situation leads to desynchronization.

In conclusion, we have reported a new mode-unlocking
transition for chaos that has a significant influence on the
cooperative dynamics of the coupled units. Separate-mode
synchronization in the form of full and partial entrainments
of the involved time scales can be diagnosed. Although ob-
viously connected, the mutual behaviors of the slow and fast
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FIG. 5. 3D plots on the (frequency mismatch & vs coupling
strength k) parameter plane for rotation numbers r, and r, sepa-
rately. w?=w3=0.5202 and E,=E,=-0.489 87.

modes manifest many signs typical for independent time
scales, including resonances, quasiperiodicity, and chaos.
Our results contribute to the understanding of how the re-
cently discovered mechanisms of chaotic phase synchroniza-
tion operates in more complex and high-dimensional sys-
tems.
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